The Signless Laplacian Spectral Radius of Unicyclic and Bicyclic Graphs with a Given Girth
نویسندگان
چکیده
Let U(n, g) and B(n, g) be the set of unicyclic graphs and bicyclic graphs on n vertices with girth g, respectively. Let B1(n, g) be the subclass of B(n, g) consisting of all bicyclic graphs with two edge-disjoint cycles and B2(n, g) = B(n, g)\B1(n, g). This paper determines the unique graph with the maximal signless Laplacian spectral radius among all graphs in U(n, g) and B(n, g), respectively. Furthermore, an upper bound of the signless Laplacian spectral radius and the extremal graph for B(n, g) are also given.
منابع مشابه
The signless Laplacian spectral radius of bicyclic graphs with a given girth
Let B(n, g) be the class of bicyclic graphs on n vertices with girth g. In this paper, the graphs in B(n, g) with the largest signless Laplacian spectral radius are characterized.
متن کاملEla the Signless Laplacian Spectral Radius of Bicyclic Graphs with a given Girth
Let B(n, g) be the class of bicyclic graphs on n vertices with girth g. In this paper, the graphs in B(n, g) with the largest signless Laplacian spectral radius are characterized.
متن کاملThe Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملThe Signless Dirichlet Spectral Radius of Unicyclic Graphs
Let G be a simple connected graph with pendant vertex set ∂V and nonpendant vertex set V0. The signless Laplacian matrix of G is denoted by Q(G). The signless Dirichlet eigenvalue is a real number λ such that there exists a function f ̸= 0 on V (G) such that Q(G)f(u) = λf(u) for u ∈ V0 and f(u) = 0 for u ∈ ∂V . The signless Dirichlet spectral radius λ(G) is the largest signless Dirichlet eigenva...
متن کاملThe Signless Laplacian Spectral Radius for Bicyclic Graphs with k Pendant Vertices
In this paper, we study the signless Laplacian spectral radius of bicyclic graphs with given number of pendant vertices and characterize the extremal graphs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 18 شماره
صفحات -
تاریخ انتشار 2011